AMS/ECON 11B Quiz 6 - Solutions November 23, 2015

1. (10 pts) A monopolistic firm sells one product in two markets, A and B . The daily demand equation for the firm's product in each market are given by

$$
Q_{A}=100-0.4 P_{A} \quad \text { and } \quad Q_{B}=120-0.5 P_{B}
$$

where Q_{A} and Q_{B} are the demands and P_{A} and P_{B} are the prices for the firm's product in each market, respectively. The firm's cost function is given by $C=40\left(Q_{A}+Q_{B}\right)+2500$.

Find the prices that the firm should charge in each market to maximize its daily profit. What is the firm's max profit? Use the second derivative test to verify that the prices you found yield the maximum profit.

1. Profit $=$ revenue - cost, and revenue $=$ price \times quantity, so the firm's profit function in this problem is

$$
\begin{aligned}
\Pi & =P_{A} Q_{A}+P_{B} Q_{B}-C \\
& =P_{A}\left(100-0.4 P_{A}\right)+P_{B}\left(120-0.5 P_{B}\right)-\left(40\left(100-0.4 P_{A}+120-0.5 P_{B}\right)+2500\right) \\
& =-0.4 P_{A}^{2}+116 P A-0.5 P_{B}^{2}+140 P_{B}-11300
\end{aligned}
$$

2. To find critical point(s), we solve the system $\Pi_{P_{A}}=0$ and $\Pi_{P_{B}}=0$:

$$
\begin{array}{lll}
\Pi_{P_{A}}=0 & \Longrightarrow-0.8 P_{A}+116=0 & \Longrightarrow
\end{array} \quad P_{A}^{*}=\frac{116}{0.8}=145
$$

3. Second derivative test: $\Pi_{P_{A} P_{A}}=-0.8, \Pi_{P_{A} P_{B}}=0$ and $\Pi_{P_{B} P_{B}}=-1$, so the discriminant is

$$
D=\Pi_{P_{A} P_{A}} \Pi_{P_{B} P_{B}}-\Pi_{P_{A} P_{B}}^{2}=0.8>0
$$

and $\Pi_{P_{A} P_{A}}=-0.8<0$, which implies that $\Pi^{*}=\Pi(145,140)=6910$ is the max profit, as required.

