Review Questions 1
 Solutions

1. Compute the differentials of the functions below.
a. $y=x^{2}-3 x+1, \quad d y=(2 x-3) d x$
b. $u=e^{x^{2}-3 x+1}, \quad d u=e^{x^{2}-3 x+1}(2 x-3) d u$
2. Use differentials to estimate $\sqrt[3]{28}$. Express your answer as a simple fraction, a / b, not in decimal form.

We use the approximation formula $f\left(x_{0}+d x\right) \approx f\left(x_{0}\right)+d y$. First, we identify the function, which is straightforward: $f(x)=x^{1 / 3}$. Next, we identify x_{0}. We want to set $28=x_{0}+d x$, and we want $d x$ to be relatively small, and we also want x_{0} to be a point for which it is easy to evaluate $f(x)$. In other words we are looking for a point, x_{0}, that is close to 28 and for which the cube root is known. $x_{0}=27$ fills the bill.

So, we have $f(x)=x^{1 / 3}, x_{0}=27$ and $d x=28-27=1$. Next we compute $d y$:

$$
d y=f^{\prime}\left(x_{0}\right) d x=\frac{1}{3} x_{0}^{-2 / 3} d x=\frac{1}{3} 27^{-2 / 3} \cdot 1=\frac{1}{27} .
$$

Finally, we plug everything back into the approximation formula, above.

$$
28^{1 / 3} \approx 27^{1 / 3}+d y=3+\frac{1}{27}=\frac{82}{27} .
$$

Note: estimate is within 0.00045 of the true value of $\sqrt[3]{28}$.
3. Compute the indefinite integrals below.
a. $\int 3 x^{4}-2 x^{3}+6 x^{2}+2 x-1 d x=\frac{3}{5} x^{5}-\frac{1}{2} x^{4}+2 x^{3}+x^{2}-x+C$.
b. $\int \sqrt[5]{x^{3}} d x=\int x^{3 / 5} d x=\frac{5}{8} x^{8 / 5}+C$.
c. $\int \frac{3 x^{2}-4 x+1}{x^{5}} d x=\int 3 x^{-3}-4 x^{-4}+x^{-5} d x=-\frac{3}{2} x^{-2}+\frac{4}{3} x^{-3}-\frac{1}{4} x^{-4}+C$.
4. Find the function $y=f(x)$, given that $y^{\prime}=x-\frac{1}{x}$, and $f(1)=3$.

First, we integrate

$$
\int y^{\prime} d x=\int x-\frac{1}{x} d x=\frac{x^{2}}{2}-\ln |x|+C .
$$

This means that $f(x)=\frac{x^{2}}{2}-\ln |x|+C$, and we use the initial value to solve for C.

$$
3=f(1)=\frac{1^{2}}{2}-\ln 1+C=\frac{1}{2}+C \Longrightarrow C=3-\frac{1}{2}=\frac{5}{2} .
$$

So, $f(x)=\frac{x^{2}}{2}-\ln |x|+\frac{5}{2}$.
5. Find the function $y=g(x)$, given that $y^{\prime \prime}=x^{2}-1, y^{\prime}(1)=2$ and $y(1)=2$.

First, we solve one initial value problem to find y^{\prime}, and to do this we begin by integrating $y^{\prime \prime}$.

$$
y^{\prime}=\int y^{\prime \prime} d x=\int x^{2}-1 d x=\frac{x^{3}}{3}-x+C_{1}
$$

Next, we solve for C_{1} using the initial value for y^{\prime},

$$
2=y^{\prime}(1)=\frac{1^{3}}{3}-1+C_{1} \Longrightarrow C_{1}=2+1-\frac{1}{3}=\frac{8}{3} .
$$

So, $y^{\prime}=\frac{x^{3}}{3}-x+\frac{8}{3}$, and now we repeat the process to find $y=g(x)$.

$$
g(x)=\int y^{\prime} d x=\int \frac{x^{3}}{3}-x+\frac{8}{3} d x=\frac{x^{4}}{12}-\frac{x^{2}}{2}+\frac{8 x}{3}+C_{2} .
$$

Finally, use the initial data for $g(x)$ to solve for C_{2},

$$
2=g(1)=\frac{1}{12}-\frac{1}{2}+\frac{8}{3}+C_{2} \Longrightarrow C_{2}=-\frac{1}{4},
$$

giving the final solution $g(x)=\frac{x^{4}}{12}-\frac{x^{2}}{2}+\frac{8 x}{3}-\frac{1}{4}$.
6. The demand function $p=f(q)$ is found by dividing the revenue function, $r(q)$, by q, i.e., $p=r / q$. The revenue function is found by solving the initial value problem, $r^{\prime}=200-q^{2 / 3}, \quad r(0)=0$. First,

$$
r=\int 200-q^{2 / 3} d q=200 q-\frac{3}{5} q^{5 / 3}+C .
$$

Next, the initial value $r(0)=0$ implies that $C=0$, so $r=200 q-\frac{3}{5} q^{5 / 3}$, and the demand function is

$$
p=200-\frac{3}{5} q^{2 / 3}
$$

7. Another initial value problem. First,

$$
c=\int(q+1000)^{1 / 3}+50 d q=\frac{3}{4}(1000+q)^{4 / 3}+50 q+K
$$

(using the substitution $u=1000+q$ to find the integral). Next, the initial data is $c(0)=12000$ (fixed cost $=c(0)$), which we use to solve for the constant of integration, K :

$$
12000=c(0)=\frac{3}{4} 1000^{4 / 3}+K=7500+K \Longrightarrow K=4500 .
$$

Thus, the cost function is $c=\frac{3}{4}(1000+q)^{4 / 3}+50 q+4500$.

