Review Questions 5

Table of integrals and differential equations

1. Compute the following integrals
a. $\int 5 x \sqrt{7-2 x} d x=$
b. $\int \frac{7 t^{2}+3 t-1}{2+5 t} d t=$
c. $\int 500 t^{2} e^{-0.04 t} d t=$
d. $\int \frac{3 e^{2 x}}{\sqrt{4+e^{x}}} d x=$
e. $\int \frac{300}{1+0.25 e^{-0.1 t}} d t=$
f. $\int \frac{4(\ln x)^{2}}{3 x \sqrt{2+7 \ln x}} d x=$
2. Let $y=f(x)$ satisfy (i) $\frac{d y}{d x}=3 x y^{2}$ and (ii) $y(1)=2$. Find the function $f(x)$.
3. The income-elasticity of demand for a firm's product is proportional to the square root of income. Find the demand as a function of income, given that $q(100)=50$ and $q(400)=90$.
4. The population of a tropical island grows at a rate that is proportional to the third root $(\sqrt[3]{ })$ of its size. In 1950, the islands population was 1728 and in 1980, the islands population was 2744 . What will the Islands population be in 2020 ?
5. The population of bass in a large lake grows according to the (logistic) model,

$$
\frac{d Y}{d t}=0.05 Y(10-Y)
$$

where Y is the size of the bass population, measured in 1000 s of fish, and t is measured in years. (I.e., if the population is 2000 , then $Y=2$.)
(a) If the bass population in 1990 was 1500 , what will the population be in 2010 ?
(b) When will/did the bass population reach 5000 ?
(c) Once the population reaches 3000 , bass are 'harvested' from the lake at the constant rate of 1000 fish per year. Describe what will happen to the fish population over time.

