Review Questions 6

Partial derivatives and applications.

1. Compute the indicated partial derivatives of the functions below.
a. $z=3 x^{2}+4 x y-5 y^{2}-4 x+7 y-2$,
$z_{x}=$
$z_{y}=$
b. $F(u, v, w)=60 u^{2 / 3} v^{1 / 6} w^{1 / 2}$
$\frac{\partial F}{\partial u}=$
$\frac{\partial^{2} F}{\partial w \partial u}=$
c. $w=x^{2} z \ln \left(y^{2}+z^{3}\right)$
$w_{x}=$
$w_{y}=$
$w_{x x}=$
$w_{y z}=$
$w_{x y z}=$
d. $f(x, y, z)=2 x^{3} y z^{2}-3 x y^{3} z+5 x^{2} y^{2}-7 y z^{5}+11 x-1$
$f_{x}=$
$f_{y}=$
$f_{z x}=$.
e. $q(u, v)=\frac{u^{2} v-3 u v^{3}}{2 u+3 v}$

$$
\begin{aligned}
& \frac{\partial q}{\partial u}= \\
& \frac{\partial q}{\partial v}=
\end{aligned}
$$

2. The monthly cost function for ACME Widgets is

$$
C=0.02 Q_{A}^{2}+0.01 Q_{A} Q_{B}+0.03 Q_{B}^{2}+35 Q_{A}+28 Q_{B}+5000
$$

where Q_{A} and Q_{B} are the monthly outputs of type A widgets and type B widgets, respectively, measured in 100's, (so, for example, if 3000 type A widgets are produced in a month, then $\left.Q_{A}=3000 / 100=30\right)$. The cost is measured on dollars.
a. Compute the marginal cost of type A widgets and the marginal cost of type B widgets, if the monthly outputs are 25000 type A widgets and 36000 type B widgets.
b. Suppose that production of type A widgets is held fixed at 25000 , and production of type B widgets is increased from 36000 to 36050 . Use your answer to part a. to estimate the change in cost to the firm.
c. Suppose that production of type A widgets is increased from 25000 to 25060 , and production of type B widgets is increased from 36000 to 36040 . Use your answer to part a. to estimate the change in cost to the firm.
3. The annual production function for SlugTools Inc. is

$$
Q=2.4 K^{1 / 3} L^{3 / 5}+3 K^{1 / 2} L^{1 / 4},
$$

where K and L are the capital and labor inputs, respectively, and where Q, K and L are all measured in $\$ 1000$'s
a. Compute the marginal products of capital and labor, when capital input is $\$ 200000$ and labor input is $\$ 320000$.
Remember: The marginal products of capital and labor are Q_{K} and Q_{L}, respectively.
b. Compute the capital and labor elasticities of output at the same input levels.
c. Suppose that capital input is held fixed at $\$ 200000$, and labor input is raised from $\$ 320000$ to $\$ 325000$. Use your answer to part b. to estimate the percentage change in output.
4. The demand function for a monopolist firm's product is given by

$$
Q=\frac{Y_{d}^{1 / 3}\left(2 P_{s}+5\right)^{1 / 2}}{P+1}
$$

where

- Q is the monthly demand for the firm's product, measured in 1000's of units;
- P is the price per unit of the firm's product, in dollars;
- P_{s} is the average price per unit of substitutes for the firm's product;
- and Y_{d} is the average monthly household disposable income in the market for the firm's product, in dollars.
a. Find $Q_{P}, Q_{P_{s}}$ and $Q_{Y_{d}}$.
b. Compute the income-elasticity of demand for the firm's product when $P=\$ 5.25$, $P_{s}=\$ 4.95$ and $Y_{d}=\$ 2800.00$.
c. Compute the price-elasticity of demand when $P=\$ 5.25, P_{s}=\$ 4.95$ and $Y_{d}=$ $\$ 2800.00$.
d. The government passes a middle-class tax-cut bill that will raise average household disposable income by 5%, and the firm raises the price of its product to $\$ 5.30$.
Use your answers to b . and c . to compute the approximate percentage change in monthly demand for the firm's product these changes cause, assuming that the average price of a substitute does not change.

5. Suppose that $z=3 x^{2} y^{3}+5 x y^{2}-3 x+y-1$, where $x=3 t-2$ and $y=2 t+1$.

Use the chain rule to compute $\left.\frac{d z}{d t}\right|_{t=0}$.
6. The production function for a firm is given by

$$
Q=F(K, L)
$$

where Q is the firm's monthly output, K is the firm's monthly capital input and L is the firm's monthly labor input. Furthermore, the labor input L is given by

$$
L=2 m\left(60 h-h^{2}\right),
$$

where m is the number of the firm's employees and h is the average number of hours each employee works per month. The firm's profit function is given by

$$
P=p_{0} Q-\left(w_{0} m h+K\right),
$$

where p_{0} is the (fixed) price of the firm's product and w_{0} is the (average) hourly wage the firm pays its employees.

Assuming that K is independent of m and h, use the chain rule to find $\frac{d P}{d m}$ and $\frac{d P}{d h}$. Express your answers in terms of F_{L} and F_{K}, as needed.

