Review Questions 7

Solutions

1. (a) $f(10,7)=(64)^{1 / 2}=8$;

$$
\begin{aligned}
& f_{x}=\frac{5}{2}(5 x+2 y)^{-1 / 2} \Longrightarrow f_{x}(10,7)=\frac{5}{16} ; \\
& f_{y}=(5 x+2 y)^{-1 / 2} \Longrightarrow f_{y}(10,7)=\frac{1}{8} ; \\
& f_{x x}=-\frac{25}{4}(5 x+2 y)^{-3 / 2} \Longrightarrow f_{x x}(10,7)=-\frac{25}{2048} ; \\
& f_{x y}=-\frac{5}{2}(5 x+2 y)^{-3 / 2} \Longrightarrow f_{x y}(10,7)=-\frac{5}{1024} ; \\
& f_{y y}=-(5 x+2 y)^{-3 / 2} \Longrightarrow f_{y y}(10,7)=-\frac{1}{512} ;
\end{aligned}
$$

The quadratic Taylor polynomial for $f(x, y)=\sqrt{5 x+2 y}$ centered at $(10,7)$:

$$
T_{2}(x, y)=8+\frac{5}{16}(x-10)+\frac{1}{8}(y-7)-\frac{25}{4096}(x-10)^{2}-\frac{5}{1024}(x-10)(y-7)-\frac{1}{1024}(y-7)^{2} .
$$

(b) $\quad g(0.5,0.25)=\ln (1)=0$

$$
g_{u}(u, v)=\frac{2 u}{u^{2}+3 v} \Longrightarrow g_{u}(0.5,0.25)=\frac{1}{1}=1
$$

$$
g_{v}(u, v)=\frac{3}{u^{2}+3 v} \Longrightarrow g_{v}(0.5,0.25)=\frac{3}{1}=3
$$

$$
g_{u u}(u, v)=\frac{6 v-2 u^{2}}{\left(u^{2}+3 v\right)^{2}} \Longrightarrow g_{u u}(0.5,0.25)=\frac{1}{1}=1
$$

$$
g_{u v}(u, v)=\frac{-6 u}{\left(u^{2}+3 v\right)^{2}} \Longrightarrow g_{u v}(0.5,0.25)=\frac{-3}{1}=-3
$$

$$
g_{v v}(u, v)=\frac{-9}{\left(u^{2}+3 v\right)^{2}} \Longrightarrow g_{v v}(0.5,0.25)=\frac{-9}{1}=-9
$$

The quadratic Taylor polynomial for $g(u, v)=\ln \left(u^{2}+3\right)$ centered at $(0.5,0.25)$:

$$
T_{2}(u, v)=(u-0.5)+3(v-0.25)+\frac{1}{2}(u-0.5)^{2}-3(u-0.5)(v-0.25)-4.5(v-0.25)^{2} .
$$

2. Find the critical points of the functions below.
a. $f(x, y)=3 x^{2}-12 x y+19 y^{2}-2 x-4 y+5$

First order conditions:

$$
\left.\begin{array}{l}
f_{x}=6 x-12 y-2=0 \\
f_{y}=-12 x+38 y-4=0
\end{array}\right\}
$$

Now, $f_{x}=0 \Longrightarrow 6 x=12 y+2$, so $12 x=24 y+4$. Plugging this into the second equation gives

$$
\Longrightarrow-(24 y+4)+38 y-4=0 \Longrightarrow 14 y-8=0 \Longrightarrow y_{0}=\frac{4}{7} \Longrightarrow x_{0}=\frac{31}{21} .
$$

So there is one critical point, $\left(\frac{31}{21}, \frac{4}{7}\right)$.
b. $g(s, t)=s^{3}+3 t^{2}+12 s t+2$

First order conditions:

$$
\left.\begin{array}{r}
g_{s}=3 s^{2}+12 t=0 \\
g_{t}=6 t+12 s=0
\end{array}\right\}
$$

Now, $g_{t}=0 \Longrightarrow t=-2 s$, and plugging this into the first equation gives

$$
3 s^{2}-24 s=0 \Longrightarrow 3 s(s-8)=0 \Longrightarrow \text { two solutions: } s_{1}=0 \text { and } s_{2}=8
$$

So there are two critical points in this case, $\left(s_{1}, t_{1}\right)=(0,0)$ and $\left(s_{2}, t_{2}\right)=$ $(8,-16)$.
c. $h(u, v)=u^{3}+v^{3}-3 u^{2}-3 v+5$.

First order conditions:

$$
\begin{aligned}
& h_{u}=3 u^{2}-6 u=0 \\
& h_{v}=3 v^{2}-3=0
\end{aligned}
$$

The first equation factors as $3 u(u-2)=0$, which has two solutions $u_{1}=0$ and $u_{2}=2$. The second equation factors as well, giving $3\left(v^{2}-1\right)=0$, which has the two solutions $v_{1}=1$ and $v_{2}=-1$.
The first equation places no restrictions on the variable v, while the second equation places no restrictions on the variable u, so the critical points of the function $h(u, v)$ are

$$
\left(u_{1}, v_{1}\right)=(0,1), \quad\left(u_{1}, v_{2}\right)=(0,-1), \quad\left(u_{2}, v_{1}\right)=(2,1) \text { and }\left(u_{2}, v_{2}\right)=(2,-1)
$$

3. Consider the function $F(x, y ; A, B)=3 x^{2}-A x y+B y^{2}-2 x-4 y+5$, with variables x and y and parameters A and B.
(a) When $A=A_{0}=12$ and $B=B_{0}=19$, this is the function $f(x, y)$ from 2a., above, and it has one critical point: $\left(x^{*}, y^{*}\right)=\left(\frac{31}{21}, \frac{4}{7}\right)$. The corresponding critical value is

$$
F^{*}=F\left(x^{*}, y^{*}, A_{0}, B_{0}\right)=f\left(\frac{31}{21}, \frac{4}{7}\right)=\frac{50}{21} .
$$

(b) Linear approximation tells us that the change in the critical value, F^{*} can be approximated by

$$
\begin{equation*}
\Delta F^{*} \approx \frac{\partial F^{*}}{\partial A} \cdot \Delta A+\frac{\partial F^{*}}{\partial B} \cdot \Delta B \tag{1}
\end{equation*}
$$

To compute the partial derivatives $\frac{\partial F^{*}}{\partial A}$ and $\frac{\partial F^{*}}{\partial B}$, we use the envelope theorem, which says that

$$
\left.\frac{\partial F^{*}}{\partial A}\right|_{\substack{A=A_{0} \\ B=B_{0}}}=\left.\frac{\partial F}{\partial A}\right|_{\substack{x=x^{*} \\ y=y^{*} \\ B=A_{0} \\ B=B_{0}}} \quad \text { and }\left.\quad \frac{\partial F^{*}}{\partial B}\right|_{\substack{A=A_{0} \\ B=B_{0}}}=\left.\frac{\partial F}{\partial B}\right|_{\substack{x=x^{*} * \\ y=y^{*} \\ B=A_{0} \\ B=B_{0}}} .
$$

Now,

$$
\frac{\partial F}{\partial A}=-x y \text { and } \frac{\partial F}{\partial B}=y^{2}
$$

from which it follows that

$$
\left.\frac{\partial F^{*}}{\partial A}\right|_{\substack{A=A_{0} \\ B=B_{0}}}=\left.\frac{\partial F}{\partial A}\right|_{\substack{x=x^{*} \\ y=y^{*} \\ B=A_{0} \\ B=B_{0}}}=-x^{*} y^{*}=-\frac{124}{147}
$$

and

$$
\left.\frac{\partial F^{*}}{\partial B}\right|_{\substack{A=A_{0} \\ B=B_{0}}}=\left.\frac{\partial F}{\partial B}\right|_{\substack{x=x^{*} \\ y=y^{*} \\ B=A_{0} \\ B=B_{0}}}=\left(y^{*}\right)^{2}=\frac{16}{49}
$$

Finally, plugging these two partial derivatives and the changes $\Delta A=0.5$ and $\Delta B=0.2$ in the approximation (1) gives the approximate change in F^{*} :

$$
\Delta F^{*} \approx-\frac{124}{147} \cdot \frac{1}{2}+\frac{16}{49} \cdot \frac{1}{5} \approx-0.356 .
$$

4. a. Second derivative test:

$$
\left.\begin{array}{rrr}
f_{x x} & = & 6 \\
f_{y y} & = & 38 \\
f_{x y} & = & -12
\end{array}\right\} \Longrightarrow D=6 \cdot 38-144=84>0
$$

Since $D>0$ and $f_{x x}>0$, it follows that $f\left(\frac{31}{21}, \frac{4}{7}\right)=\frac{50}{21}$ is a relative minimum value. (In fact, since the second derivatives are all constant, this is the absolute minimum value.)
b. Second derivative test:

$$
\left.\begin{array}{rl}
g_{s s} & =6 s \\
g_{t t} & =6 \\
g_{s t} & =12
\end{array}\right\} \Longrightarrow D(s, t)=36 s-144
$$

Since $D(0,0)=-144<0$, the first critical point yields a saddle point on the graph of $g(s, t)$ (neither max nor min). Since $D(8,-16)=144>0$ and $g_{s s}(8,-16)=48>0$, it follows that $g(8,-16)=-254$, is a relative minimum value.

Can you show that $g(8,-16)=-254$ is not the absolute minimum
c. Second derivative test:

$$
\left.\begin{array}{rl}
h_{u u} & =6 u-6 \\
h_{v v} & =6 v \\
h_{u v} & =0
\end{array}\right\} \Longrightarrow D(u, v)=36 v(u-1)
$$

Evaluating the discriminant at the four critical points we find that
i. $D(0,1)=-36<0$, so $h(0,1)=3$ is neither a local minimum value nor a local maximum value;
ii. $D(0,-1)=36>0$ and $h_{u u}(0,-1)=-6<0$, so $h(0,-1)=7$ is a local maximum value;
iii. $D(2,1)=36>0$ and $h_{u u}(2,1)=6>0$, so $h(2,1)=-1$ is a local minimum value; and
iv. $(D(2,-1)=-36$, so $h(2,-1)=3$ is neither a local minimum value nor a local maximum value.
5. ACME's profit function is

$$
\begin{aligned}
\Pi= & P_{A} Q_{A}+P_{B} Q_{B}-C \\
= & 100 P_{A}-3 P_{A}^{2}+2 P_{A} P_{B}+60 P_{B}+2 P_{A} P_{B}-2 P_{B}^{2} \\
& \quad-\left[20\left(100-3 P_{A}+2 P_{B}\right)+30\left(60+2 P_{A}-2 P_{B}\right)+1200\right] \\
= & -3 P_{A}^{2}+4 P_{A} P_{B}-2 P_{B}^{2}+100 P_{A}+80 P_{B}-5000
\end{aligned}
$$

(i) Critical point(s):

$$
\left.\begin{array}{l}
\Pi_{P_{A}}=-6 P_{A}+4 P_{B}+100=0 \\
\Pi_{P_{B}}=4 P_{A}-4 P_{B}+80=0
\end{array}\right\}
$$

Now, $\Pi_{P_{B}}=0 \Longrightarrow 4 P_{B}=4 P_{A}+80$, and plugging this into the first equation gives $-6 P_{A}+\left(4 P_{A}+80\right)+100=0 \Longrightarrow-2 P_{A}+180=0 \Longrightarrow P_{A}=90 \Longrightarrow P_{B}=110$.

So there is only one critical point $\left(P_{A}, P_{B}\right)=(90,110)$.
(ii) Second derivative test:

$$
\left.\begin{array}{l}
\Pi_{P_{A} P_{A}}= \\
\Pi_{P_{B} P_{B}}= \\
\Pi_{P_{A} P_{B}}= \\
\Pi_{1}
\end{array}\right\} \Longrightarrow D=(-6) \cdot(-4)-16=8>0
$$

Since $D>0$ and $\Pi_{P_{A} P_{A}}=-6<0$, and the second derivatives are all constant, it follows that $\Pi(90,110)=3900$ is the absolute maximum profit.
6. Find the critical point(s) of the functions below. You do not need to classify the critical values in this problem.
a. $H(u, v, w)=2 u^{2}+v^{2}-3 w^{2}+2 u v+4 u w-2 v w$.

$$
\begin{aligned}
H_{u} & =4 u+2 v+4 w=0 \\
H_{v} & =2 u+2 v-2 w=0 \\
H_{w} & =4 u-2 v-6 w=0
\end{aligned}
$$

The second equation implies that $w=u+v$, and plugging this into the first and third equations gives the pair of equations

$$
\begin{aligned}
8 u+6 v & =0 \\
-2 u-8 v & =0
\end{aligned}
$$

The second equation in this pair implies that $u=-4 v$, and putting this into the first equation of the pair, gives $-26 v=0$, so $v=0$, which implies that $u=0$ and $w=0$. I.e., there is only one critical point, $(0,0,0)$.
b. $F(x, y, z)=30 x^{1 / 3} y^{2 / 3}-z(5 x+8 y-400)$.

$$
\begin{aligned}
& F_{x}=10 x^{-2 / 3} y^{2 / 3}-5 z=0 \\
& F_{y}=20 x^{1 / 3} y^{-1 / 3}-8 z=0 \\
& F_{z}=-(5 x+8 y-400)=0
\end{aligned}
$$

Solving the first equation for z gives

$$
z=2 x^{-2 / 3} y^{2 / 3}
$$

and solving the second equation for z gives

$$
z=2.5 x^{1 / 3} y^{-1 / 3}
$$

This means that

$$
2 x^{-2 / 3} y^{2 / 3}=2.5 x^{1 / 3} y^{-1 / 3},
$$

since both are equal to z. Multiplying both sides of the last equation by $x^{2 / 3} y^{1 / 3}$ gives

$$
2 y=2.5 x \Longrightarrow y=1.25 x
$$

Plugging this into the equation $F_{z}=0$, gives

$$
-5 x-10 x+400=0 \Longrightarrow 15 x=400 \Longrightarrow x=\frac{80}{3}
$$

This means that $y=\frac{100}{3}$ and $z=2\left(\frac{80}{3}\right)^{-2 / 3}\left(\frac{100}{3}\right)^{2 / 3} \approx 2.32$. I.e., there is one critical point: $(80 / 3,100 / 3,2.32)$.
c. $G(w, x, y, z)=x^{2}+2 y^{2}+4 z^{2}-2 w x-5 w y-3 w z+300 w$.

$$
\begin{aligned}
G_{w}=300-2 x-5 y-3 z & =0 \\
G_{x} & =2 x-2 w \\
& =0 \\
G_{y} & =4 y-5 w \\
G_{z} & =8 z-3 w
\end{aligned}
$$

The second, third and fourth equations imply that

$$
w=x, \quad w=\frac{4 y}{5} \text { and } w=\frac{8 z}{3}
$$

so $x=4 y / 5 \Longrightarrow y=5 x / 4$ and $x=8 z / 3 \Longrightarrow z=3 x / 8$. Plugging these into the first equation gives

$$
300-2 x-\frac{25 x}{4}-\frac{9 x}{8}=0 \Longrightarrow \frac{75 x}{8}=300 \Longrightarrow x=32
$$

So $y=40, z=12, w=32$ and there is one critical point:

$$
(w, x, y, z)=(32,32,40,12)
$$

7. The revenue function for this firm is

$$
R=P_{A} Q_{A}+P_{B} Q_{B}=-\frac{3}{2} P_{A}^{2}+4 P_{A} P_{B}-3 P_{B}^{2}+80 P_{A}+60 P_{B}
$$

which we see by replacing Q_{A} and Q_{B} by the rights hand sides of the demand equations. Next, we find the first order partial derivatives and set the equal to 0 :

$$
\begin{aligned}
& R_{P_{A}}=0 \Longrightarrow-3 P_{A}+4 P_{B}+80=0 \\
& R_{P_{B}}=0 \Longrightarrow 4 P_{A}-6 P_{B}+60=0
\end{aligned}
$$

Solving the second equation for P_{B} gives

$$
P_{B}=10+\frac{2}{3} P_{A} .
$$

Substituting this into the first equation gives

$$
-3 P_{A}+4\left(10+\frac{2}{3} P_{A}\right)+80=0 \Longrightarrow-\frac{P_{A}}{3}+120=0 \Longrightarrow P_{A}=360
$$

This yields one critical prices $\left(P_{A}^{*}, P_{B}^{*}\right)=(360,250)$ and the corresponding critical quantities $\left(Q_{A}^{*}, Q_{B}^{*}\right)=(40,30)$.
Next, we apply the second derivative test:

$$
R_{P_{A} P_{A}}=-3, R_{P_{A} P_{B}}=4 \text { and } R_{P_{B} P_{B}}=-6, \Longrightarrow D=18-16=2>0
$$

This implies that the critical value of the revenue

$$
R^{*}=P_{A}^{*} Q_{A}^{*}+P_{B}^{*} Q_{B}^{*}=360 \cdot 40+250 \cdot 30=21900
$$

is a relative maximum value, and since the second derivatives are all constant, it is the absolute maximum revenue.

