UCSC

Review Questions 8

Optimization in several variables, II

- 1. Find the optimal values for the constrained optimization problems below. You may assume that (one of) the critical point(s) you find yield(s) the desired optimum.
 - **a.** Find the minimum value of $f(x, y) = x^2 + y^2$ subject to 3x + 5y = 68.
 - **b.** Find the maximum value of $g(x, y, z) = 20x^{1/2}y^{1/3}z^{1/6}$, subject to the constraint 5x + 4y + 7z = 1680.
 - c. Find the maximum and minimum values of the function h(x, y) = 3x + 5y subject to the constraint $x^2 + y^2 = 136$.
- 2. Jack's (gustatory) utility function is $U(x, y, z) = 5 \ln x + 7 \ln y + 18 \ln z$, where x is the number of fast-food meals Jack consumes in a month; y is the number of 'diner' meals he consumes in a month; and z is the number of 'fancy restaurant' meals he consumes in a month.

The average price of a fast-food meal is $p_x = \$4.00$; the average price of a 'diner' meal is $p_y = \$8.00$; and the average price of a 'fancy restaurant' meal is $p_z = \$30.00$.

- **a.** How many meals of each type should Jack consumer per month to maximize his utility, if his monthly budget for these meals is $\beta = \$1200.00?$
- **b.** By approximately how much will Jack's utility increase if his budget increases by \$50.00? Explain your answer.
- **3.** The production function for SlugTools Drills, Inc. is $P(K,L) = 10K^{2/5}L^{3/5}$, where P(K,L) is the number of drills produced in a year, K is the capital input, and L is the labor input. The cost per unit of capital is \$1280, and the cost per unit of labor is \$14580.
 - **a.** Find the levels of labor and capital inputs that **minimize** the cost of producing 20480 drills. You may assume that the critical point you find does in fact yield the minimal cost.
 - **b.** Find the levels of labor and capital inputs that **minimize** the cost of producing q drills. Express your answer in terms of q.
 - c. Use your answer to part b. to find the marginal cost function for SlugTools.
 - **d.** Assuming that the fixed cost for SlugTools is $C_0 = $100,000$, find their cost function.
- 4. Consider the firm in RQ #7, problem 5. The firm's cost function there is

$$C = 20Q_A + 30Q_B + 1200,$$

so the marginal cost (to the firm) of product A is $C_{Q_A} = 20$.

Use the *envelope theorem* and linear approximation to estimate the change in the firm's profit if the marginal cost of product A increases from 20 to 21, assuming that the demand equations and all the other parameters remain the same (as in RQ 7, #5).

Comment: The computational aspect of this problem is easy, once you set it up correctly.