
econ 11b ucsc ams 11b

Review Questions 8

Solutions

Note: In these problems, you may generally assume that the critical point(s) you find produce
the required optimal value(s). At the same time, you should see if you can find an argument to
justify this assumption in each example.

1a. Find the minimum value of f(x, y) = x2 + y2 subject to 3x+ 5y = 68.

Lagrangian: F (x, y, λ) = x2 + y2 − λ(3x+ 5y − 68).

‘Structural’ equations:
Fx = 2x− 3λ = 0
Fy = 2y − 5λ = 0

Solving these equations for λ gives

λ =
2x

3
=

2y

5
=⇒ x =

3y

5
.

Substituting this into the constraint gives

3

(
3y

5

)
+ 5y = 68 =⇒ 34y = 340 =⇒ y0 = 10 and x0 = 6 .

The minimum value of x2 + y2 subject to 3x+ 5y = 68 is therefore obtained at the point (6, 10),
giving 62 + 102 = 136.

1b. Find the maximum value of g(x, y, z) = 20x1/2y1/3z1/6, subject to the constraint 5x+ 4y+ 7z =
1680.

Lagrangian: F (x, y, z, λ) = 20x1/2y1/3z1/6 − λ(5x+ 4y + 7z − 1680).

‘Structural’ equations:

Fx = 10x−1/2y1/3z1/6 − 5λ = 0
Fy = (20/3)x1/2y−2/3z1/6 − 4λ = 0
Fz = (10/3)x1/2y1/3z−5/6 − 7λ = 0.

Solving these equations for λ yields the triple equation

(λ =)
2y1/3z1/6

x1/2
=

5x1/2z1/6

3y2/3
=

10x1/2y1/3

21z5/6
.

Comparing the first and second expressions, canceling the factor of z1/6 from both and clearing
denominators gives

6y = 5x =⇒ y =
5x

6
.



Comparing the first and third expressions, canceling the factor of y1/3 from both and clearing
denominators gives

42z = 10x =⇒ z =
5x

21
.

Substituting the expressions for y and z into the constraint gives

5x+ 4

(
5x

6

)
+ 7

(
5x

21

)
= 1680 =⇒ 420x = 70560 =⇒ x0 = 168, y0 = 140, z0 = 40.

Thus, the maximum value of f(x, y, z) = 20x1/2y1/3z1/6, subject to the constraint 5x+4y+7z =

1680 is given by f(168, 140, 40) ≈ 2489.262 .

1c. Find the maximum and minimum values of the function h(x, y) = 3x + 5y subject to the
constraint x2 + y2 = 136.

Lagrangian: F (x, y, λ) = 3x+ 5y − λ(x2 + y2 − 136).

‘Structural’ equations:
Fx = 3− 2xλ = 0
Fy = 5− 2yλ = 0.

Solving these equations for λ gives

λ =
3

2x
=

5

2y
=⇒ 6y = 10x =⇒ y =

5x

3
.

Substituting this expression for y into the constraint gives

x2 +

(
5x

3

)2

= 136 =⇒ 34x2 = 1224 =⇒ x2 = 36.

There are two critical x-values, x1 = 6 and x2 = −6, so there are two critical points: (x1, y1) =
(6, 10) and (x2, y2) = (−6,−10). The two critical values are h(6, 10) = 68, which is the
constrained maximum value, and h(−6,−10) = −68, which is the constrained minimum
value.

2. The objective function is the utility U(x, y, z) = 5 lnx+ 7 ln y + 18 ln z, and the constraint is
the budget (or income) constraint we obtain from the prices and the budget: xpx+ypy +zpz =
β =⇒ 4x+ 8y + 30z = 1200.

a. Lagrangian: F (x, y, z, λ) = 5 lnx+ 7 ln y + 18 ln z − λ(4x+ 8y + 30z − 1200).

‘Structural’ equations:

Fx =
5

x
− 4λ = 0

Fy =
7

y
− 8λ = 0

Fz =
18

z
− 30λ = 0.



Solving these equations for λ gives the triple equation

λ =
5

4x
=

7

8y
=

3

5z
.

Comparing the x-term and the y-term and clearing denominators gives

40y = 28x =⇒ y =
7x

10
.

Comparing the x-term and the z-term and clearing denominators gives

25z = 12x =⇒ z =
12x

25
.

Substituting the expressions for y and z that we found into the budget constraint gives

4x+ 8

(
7x

10

)
+ 30

(
12x

25

)
= 1200 =⇒ 1200x = 60000 =⇒ x0 = 50, y0 = 35, z0 = 24.

Thus, Jack maximizes his utility by consuming 50 fast food meals, 35 diner meals and 24
‘fancy’ restaurant meals in a month, resulting in a utility of U(50, 35, 24) ≈ 101.652.

b. Since the utility function and the prices of meals are not changing, the maximum possible
utility, Umax, is a function of the budget, β. I.e., increasing the budget increases Umax and
decreasing the budget decreases Umax.

The envelope theorem tells us that

dUmax

dβ
= λ0,

where λ0 is the critical value of the multiplier λ. In this case,

λ0 =
5

4x0

=
5

200
= 0.025.

Hence by the approximation formula,

∆Umax ≈ λ0 ·∆β = 0.025 · 50 = 1.25.

In other words, if Jack’s food budget increases by $50.00, then his (maximum possible) utility
will increase by approximately 1.25.

3. The objective function in this case is the cost function

C(K,L) = 1280K + 14580L,

which is the cost of using K units of capital input and L units of labor input. The constraint
in this case is given by the equation

10K2/5L3/5 = 20480,

since the task here is to minimize the cost of producing 20480 drills.



a. Lagrangian: F (K,L, λ) = 1280K + 14580L− λ(10K2/5L3/5 − 20480).

‘Structural’ equations:

FK = 1280− 4λK−3/5L3/5 = 0
FL = 14580− 6λK2/5L−2/5 = 0.

Solving these equations for λ gives

λ =
320K3/5

L3/5
=

2430L2/5

K2/5
=⇒ 320K = 2430L =⇒ K =

243

32
L .

Plugging this expression for K into the constraint gives the critical L value,

10
(

243
32
L

)2/5 · L3/5 = 20480 =⇒ 90

4
L = 20480 =⇒ L∗ =

2

45
· 20480 =

8192

9
,

and the critical value capital input is obtained using the relationship boxed above,

K∗ =
243

32
L∗ = 6912

b. This is easier than it may appear at first glance, since we have done most of the work already
in part a. All we need to do is replace 20480 by q in our formula for L∗, i.e., in the second
boxed equation in part a.

If we denote by L∗(q) and K∗(q) the cost minimizing levels of labor and capital input necessary
to produce q drills, then

L∗(q) =
2

45
q

and

K∗(q) =
243

32
· L∗(q) =

27

80
q.

c. Denote by λ∗(q) the critical value of the multiplier in the optimization problem of minimizing
the cost of producing q drills and denote by C∗(q) the minimal cost of producing q drills.
Then, by the envelope theorem we may conclude that

dC∗

dq
= λ∗(q) =

2430(L∗(q))2/5

(K∗(q))2/5
= 2430

( 2
45
q

27
80
q

)2/5

= 1080.

I.e., the drill company’s marginal cost is constant.

d. With a constant marginal cost of 1080 per drill, and fixed costs of c0 = $100, 000, the firm’s
cost function must be

c = 1080q + 100000.



4. To use the envelope theorem, we need to rewrite the firm’s profit function in a way that
emphasizes the role of the parameter CQA

in the profit function. The firm’s cost function is

C = 20QA + 30QB + 1200,

so CQA
= 20. To keep track of this parameter in the profit function, I’ll replace 20 by CQA

in
the profit function. Starting with the expression given in the solution to RQ 2, problem 3, we
rewrite Π (slightly) as follows.

Π = R(PA, PB, QA, QB)− C(QA, QB)

= PAQA + PBQB − CQA
·QA − 30QB − 1200

= −3P 2
A + 4PAPB − 2P 2

B + 40PA + 120PB + CQA
(3PA − 2PB − 100)− 3000

If CQA
= 20, then

Π = −3P 2
A + 4PAPB − 2P 2

B + 100PA + 80PB − 5000,

and we found in RQ 2 that profit is maximized at the critical prices P ∗A = 90 and P ∗B = 110,
with a corresponding maximum profit of Π∗ = 3900. According to the envelope theorem

∂Π∗

∂CQA

∣∣∣∣
CQA

=20

=
∂Π

∂CQA

∣∣∣∣ PA=P∗
A

PB=P∗
B

CQA
=20

= 3P ∗A − 2P ∗B − 100 = −50.

If CQA
rises from 20 to 20.5, then by linear approximation

∆Π∗ ≈ ∂Π∗

∂CQA

·∆CQA
= 50 · 1 = −50.

I.e., if the marginal cost (to the firm) of producing product A increases from 20 per unit to
21 per unit, then their (max) profit will decrease by about 50.

Comment: If you replace the cost function C = 20QA+30QB +1200 by the new cost function
C1 = 21QA + 30QB + 1200 and redo the maximization problem (RQ 2, #3), you will find that
the new critical prices are P ∗A = 90.5 and P ∗B = 110, and the new max profit is Π∗ = 3850.75.†

There are two interesting phenomena to note. First, the combination of the envelope theorem
and linear approximation predicts the change in the firm’s profit quite accurately. Second,
the firm’s optimal reaction to the increase in the marginal cost of product A is to increase the
price of product A. The price of product B remains unchanged.

†As you can (and should) check for yourself.


