Review Questions 9

Solutions

1. a. $Q(20,15,5) \approx 575.866$
b. First compute the marginal products of labor and real estate at the given point:

$$
\begin{aligned}
Q_{L}=15 K^{2 / 5} L^{-1 / 2} R^{1 / 4} & \Longrightarrow Q_{L}(20,15,5) \approx 19.195, \\
Q_{R}=7.5 K^{2 / 5} L^{1 / 2} R^{-3 / 4} & \Longrightarrow Q_{R}(20,15,5) \approx 28.793 .
\end{aligned}
$$

Now, use linear approximation:

$$
\begin{aligned}
\Delta Q & \approx Q_{L}(20,15,5) \cdot \Delta L+Q_{R}(20,15,5) \cdot \Delta R \\
& \approx(19.195)(0.75)+(28.793)(0.5) \approx 28.793 .
\end{aligned}
$$

2. a. We want to maximize the output, $Q=30 K^{2 / 5} L^{1 / 2} R^{1 / 4}$, subject to the budget constraint $K+L+R=69$, since the inputs are all being measured in \$millions. The Lagrangian for this problem is

$$
F(K, L, R, \lambda)=30 K^{2 / 5} L^{1 / 2} R^{1 / 4}-\lambda(K+L+R-69),
$$

and the first order conditions are

$$
\begin{aligned}
& F_{K}=0 \Longrightarrow \quad 12 K^{-3 / 5} L^{1 / 2} R^{1 / 4}=\lambda, \\
& F_{L}=0 \quad \Longrightarrow \quad 15 K^{2 / 5} L^{-1 / 2} R^{1 / 4}=\lambda, \\
& F_{R}=0 \quad \Longrightarrow \quad 7.5 K^{2 / 5} L^{1 / 2} R^{-3 / 4}=\lambda, \\
& F_{\lambda}=0 \quad \Longrightarrow \quad K+L+R=69
\end{aligned}
$$

The first two equations imply that

$$
12 K^{-3 / 5} L^{1 / 2} R^{1 / 4}=15 K^{2 / 5} L^{-1 / 2} R^{1 / 4} \Longrightarrow \frac{12 L^{1 / 2}}{K^{3 / 5}}=\frac{15 K^{2 / 5}}{L^{1 / 2}}
$$

after canceling the common factor of $R^{1 / 4}$. Clearing denominators gives

$$
12 L=15 K \Longrightarrow L=1.25 K
$$

Likewise, comparing the first and third equations implies that

$$
12 K^{-3 / 5} L^{1 / 2} R^{1 / 4}=7.5 K^{2 / 5} L^{1 / 2} R^{-3 / 4} \Longrightarrow \frac{12 R^{1 / 4}}{K^{3 / 5}}=\frac{7.5 K^{2 / 5}}{R^{3 / 4}}
$$

and clearing denominators gives

$$
12 R=7.5 \mathrm{~K} \Longrightarrow R=0.625 \mathrm{~K} .
$$

Substituting for R and L in the fourth equation (the constraint) gives

$$
K+1.25 K+0.625 K=69 \Longrightarrow 2.875 K=69
$$

Thus, the critical values for the inputs are

$$
K^{*}=24, \quad L^{*}=30 \text { and } R^{*}=15,
$$

and the hotel chain's maximum output is

$$
Q^{*}=Q(24,30,15) \approx 1152.894
$$

b. When output is maximized, the critical value of λ is

$$
\lambda^{*}=12\left(K^{*}\right)^{-3 / 5}\left(L^{*}\right)^{1 / 2}\left(R^{*}\right)^{1 / 4} \approx 19.215 .
$$

c. By the envelope theorem,

$$
\frac{d Q^{*}}{d B}=\lambda^{*},
$$

where B is the budget. It follows that

$$
\Delta Q^{*} \approx \lambda^{*} \cdot \Delta B \approx 9.607
$$

since we measure the budget in the same units as the inputs, so an increase of $\$ 500,000$, means that $\Delta B=0.5$.
3. The equation $\eta_{q / p}=-0.1 \sqrt{p}$ gives a differential equation for the demand function, namely

$$
\frac{d q}{d p} \cdot \frac{p}{q}=-0.1 p^{1 / 2}
$$

First, separate the variables:

$$
\frac{d q}{q}=-0.1 p^{-1 / 2} d p
$$

Then, integrate both sides:

$$
\int \frac{d q}{q}=\ln q=-0.2 p^{1 / 2}+C=\int-0.1 p^{-1 / 2} d p
$$

Next, exponentiate to solve for q :

$$
q=e^{-0.2 p^{1 / 2}+C}=A e^{-\sqrt{p} / 5},
$$

where $A=e^{C}$. Finally, use the data $q(16)=200$ to solve for A :

$$
200=A e^{-4 / 5} \Longrightarrow A=200 e^{4 / 5} \Longrightarrow q=200 e^{4 / 5} e^{-\sqrt{p} / 5}=200 e^{(4-\sqrt{p}) / 5},
$$

so $q(25)=200 e^{-1 / 5} \approx 163.75$.
4. The first step is to find the point of market equilibrium. First we find the equilibrium demand, \tilde{q} :

$$
0.01 q^{2}+5=p=60-0.6 q \Longrightarrow 0.01 q^{2}+0.6 q-55=0 \quad \Longrightarrow \quad q=\frac{-0.6 \pm \sqrt{0.36+2.2}}{0.02}
$$

so $\tilde{q}=50$, since the other solution $(q=-110)$ is negative. The equilibrium price is then $\tilde{p}=60-0.6 \tilde{q}=30$.

Next, consumers' surplus $\left(C S=\int_{0}^{\tilde{q}}(\operatorname{demand}-\tilde{p}) d q\right) \ldots$

$$
C S=\int_{0}^{50}(60-0.6 q)-30 d q=30 q-\left.0.3 q^{2}\right|_{0} ^{50}=750
$$

\ldots and producers' surplus $\left(P S=\int_{0}^{\tilde{q}}(\tilde{p}-\right.$ supply $\left.) d q\right)$

$$
P S=\int_{0}^{50} 30-\left(0.01 q^{2}+5\right) d q=25 q-\left.\frac{0.01}{3} q^{3}\right|_{0} ^{50}=\frac{2500}{3} .
$$

5. a. We need to optimize the utility function $U=3 \ln (x+2)+2 \ln (y+3)+\ln (z+5)$, subject to the constraint $10 x+20 y+25 z=1500$. The Lagrangian for this problem is

$$
F(x, y, z, \lambda)=3 \ln (x+2)+2 \ln (y+3)+\ln (z+5)-\lambda(10 x+20 y+25 z-1500),
$$

and the first order conditions for (constrained) optimization are

$$
\begin{aligned}
& F_{x}=0 \quad \Longrightarrow \frac{3}{x+2}=10 \lambda, \\
& F_{y}=0 \quad \Longrightarrow \quad \frac{2}{y+3}=20 \lambda, \\
& F_{z}=0 \quad \Longrightarrow \quad \frac{1}{z+5}=25 \lambda, \\
& F_{\lambda}=9 \quad \Longrightarrow \quad 10 x+20 y+25 z=1500 .
\end{aligned}
$$

Solving the first three equations for λ gives

$$
\begin{aligned}
\lambda & =\frac{3}{10(x+2)} \\
\lambda & =\frac{1}{10(y+3)} \\
\lambda & =\frac{1}{25(z+5)}
\end{aligned}
$$

Setting the first and second expressions for λ equal to each other, clearing denominators and simplifying gives

$$
3(y+3)=(x+2) \Longrightarrow y=\frac{x}{3}-\frac{7}{3} .
$$

Setting the first and third expressions for λ equal to each other and multiplying both sides by $(x+2)(z+5)$ gives

$$
0.3(z+5)=0.04(x+2) \Longrightarrow z=\frac{2 x}{15}-\frac{71}{15} .
$$

Substituting these expressions for y and z into the constraint gives

$$
10 x+20 \overbrace{\left(\frac{x}{3}-\frac{7}{3}\right)}^{y}+25 \overbrace{\left(\frac{2 x}{15}-\frac{71}{15}\right)}^{z}=1500 \Longrightarrow 20 x=1665 .
$$

Thus, the critical values for x, y and z are

$$
x^{*}=83.25, \quad y^{*}=\frac{305}{12} \approx 25.42 \text { and } z^{*}=\frac{191}{30} \approx 6.37,
$$

and the maximum utility is

$$
U^{*}=U\left(x^{*}, y^{*}, z^{*}\right) \approx 22.462
$$

b. By linear approximation,

$$
\Delta U^{*} \approx \frac{d U^{*}}{d B} \cdot \Delta B
$$

If the consumer wants to increase her max utility by one unit, then $\Delta U^{*}=1$ and the approximation $1 \approx \frac{d U^{*}}{d B} \cdot \Delta B$ implies that the change in budget should be

$$
\Delta B \approx \frac{1}{d U^{*} / d B}
$$

By the envelope theorem,

$$
\frac{d U^{*}}{d B}=\lambda^{*}=\frac{3}{10\left(x^{*}+2\right)}=\frac{3}{852.5} \approx 0.00352,
$$

so

$$
\Delta B \approx 1 / \lambda^{*} \approx 284.17
$$

I.e., to increase her utility by one util, the consumer will have to increase her budget by about $\$ 284.17$.
6. The present value is given by the integral $\int_{0}^{10} 200 t^{2} e^{-0.045 t} d t$, which we compute using formulas $\# 39$ and $\# 38$ from appendix C in the book:

$$
\begin{aligned}
\int_{0}^{10} 200 t^{2} e^{-0.045 t} d t & =\left.\frac{200 t^{2} e^{-0.045 t}}{-0.045}\right|_{0} ^{10}-\frac{2}{-0.045} \int_{0}^{10} 200 t e^{-0.045 t} d t \\
& =-283390.29+\frac{400}{0.045}\left[\left.\frac{e^{-0.045 t}}{(0.045)^{2}}(-0.045 t-1)\right|_{0} ^{10}\right] \\
& =-283390.29+\frac{400}{(0.045)^{3}}\left(e^{-0.45}(-1.45)+1\right) \\
& =-283390.29+331145.92 \\
& =47755.63
\end{aligned}
$$

The first integral was computed using formula \#39 ($a=-0.045$ and $n=2$), and the second integral was computed using formula $\# 38$ ($a=-0.045$ again).
7.
a. The firm's total daily output is $Q_{A}+Q_{B}$, so the firm's daily cost is

$$
C=40\left(Q_{A}+Q_{B}\right)+2500
$$

The firm's revenue from market A is $R_{A}=P_{A} Q_{A}$ and the revenue from market B is $R_{B}=P_{B} Q_{B}$. The firm's profit function is

$$
\begin{aligned}
\Pi & =P_{A} Q_{A}+P_{B} Q_{B}-C \\
& =P_{A}\left(100-0.4 P_{A}\right)+P_{B}\left(120-0.5 P_{B}\right)-\left[40\left(100-0.4 P_{A}+120-0.5 P_{B}\right)+2500\right] \\
& =-0.4 P_{A}^{2}-0.5 P_{B}^{2}+116 P_{A}+140 P_{B}-11300 .
\end{aligned}
$$

The first order conditions for an optimum value give

$$
\begin{aligned}
& \Pi_{P_{A}}=0 \Longrightarrow-0.8 P_{A}+116=0 \Longrightarrow P_{A}^{*}=145 \\
& \Pi_{P_{B}}=0 \Longrightarrow-P_{B}+140=0 \Longrightarrow P_{B}^{*}=140
\end{aligned}
$$

The second order conditions for a maximum are

$$
\Pi_{P_{A} P_{A}}\left(P_{A}^{*}, P_{B}^{*}\right) \cdot \Pi_{P_{B} P_{B}}\left(P_{A}^{*}, P_{B}^{*}\right)-\left(\Pi_{P_{A} P_{B}}\left(P_{A}^{*}, P_{B}^{*}\right)\right)^{2}>0 \text { and } \Pi_{P_{A} P_{A}}\left(P_{A}^{*}, P_{B}^{*}\right)<0 .
$$

In this case we have $\Pi_{P_{A} P_{A}}=-0.8<0$ and

$$
\Pi_{P_{A} P_{A}}\left(P_{A}^{*}, P_{B}^{*}\right) \cdot \Pi_{P_{B} P_{B}}\left(P_{A}^{*}, P_{B}^{*}\right)-\left(\Pi_{P_{A} P_{B}}\left(P_{A}^{*}, P_{B}^{*}\right)\right)^{2}=0.8>0
$$

for all $\left(P_{A}, P_{B}\right)$, so that the second order conditions are satisfied, and because the conditions hold everywhere, the critical value of profit

$$
\Pi^{*}=\Pi\left(P_{A}^{*}, P_{B}^{*}\right)=6910
$$

is the absolute maximum daily profit.
To summarize: the firm's profit is maximized when $P_{A}^{*}=145$ and $P_{B}^{*}=140$, at which point the maximum profit is $\Pi^{*}=6910$.
b. Returning to the original expression of the profit function and labeling the marginal cost by μ, we have

$$
\Pi=P_{A}\left(100-0.4 P_{A}\right)+P_{B}\left(120-0.5 P_{B}\right)-\left[\mu\left(100-0.4 P_{A}+120-0.5 P_{B}\right)+2500\right] .
$$

According to the envelope theorem,

$$
\left.\frac{d \Pi^{*}}{d \mu}\right|_{\mu=40}=\left.\frac{\partial \Pi}{\partial \mu}\right|_{\substack{P_{A}=P_{B}^{*} \\ P_{B}=P_{B}^{*} \\ \mu=40}}=-\left(100-0.4 P_{A}^{*}+120-0.5 P_{B}^{*}\right)=-92 .
$$

Now, using linear approximation we have

$$
\left.\Delta \Pi^{*} \approx \frac{d \Pi^{*}}{d \mu}\right|_{\mu=40} \cdot \Delta \mu=-92 \cdot 2=-184
$$

b. The sales tax does not affect the firm's cost, but it does change the firm's revenue in each market, since it raises the price of the firm's product and so affects the demand.

Specifically, the price with tax to consumers is $1.1 P_{A}$ in market A and $1.1 P_{B}$ in market B , so the new demands in each of these markets will be

$$
\widetilde{Q}_{A}=100-0.4\left(1.1 P_{A}\right)=100-0.44 P_{A} \quad \text { and } \quad \widetilde{Q}_{B}=120-0.5\left(1.1 P_{B}\right)=120-0.55 P_{B},
$$

respectively. This means that the firm's new profit function is

$$
\widetilde{\Pi}=P_{A} \widetilde{Q}_{A}+P_{B} \widetilde{Q}_{B}-C\left(\widetilde{Q}_{A}+\widetilde{Q}_{B}\right)=-0.44 P_{A}^{2}-0.55 P_{B}^{2}+117.6 P_{A}+142 P_{B}-11300
$$

The first order conditions are now

$$
\begin{aligned}
& \Pi_{P_{A}}=0 \Longrightarrow-0.88 P_{A}+117.6=0 \Longrightarrow \widetilde{P}_{A}^{*} \approx 133.64 \\
& \Pi_{P_{B}}=0 \Longrightarrow-1.1 P_{A}+142=0 \Longrightarrow \widetilde{P}_{B}^{*} \approx 129.09,
\end{aligned}
$$

and since the second order conditions for a maximum are still satisfied (check!),

$$
\widetilde{\Pi}^{*}=\widetilde{\Pi}\left(\widetilde{P}_{A}^{*}, \widetilde{P}_{B}^{*}\right) \approx 5723.27
$$

is the firm's new maximum profit.
The government's daily revenue from the tax is 10% of the firm's revenue (not profit - that's taxed elsewhere), i.e.,

$$
G R=0.1\left[\widetilde{P}_{A}^{*}\left(100-0.44 \widetilde{P}_{A}^{*}\right)+\widetilde{P}_{B}^{*}\left(120-0.55 \widetilde{P}_{B}^{*}\right)\right] \approx 1183.13 .
$$

The cost to the firm is the difference between the old maximum profit and the new:

$$
\Pi^{*}-\widetilde{\Pi}^{*}=6910-5723.27=1186.87 .
$$

The effect on consumers is that the total price per unit has increased. The costs per unit to consumers in each market are now

$$
1.1 \widetilde{P}_{A}^{*}=147 \quad \text { and } \quad 1.1 \widetilde{P}_{B}^{*}=142
$$

respectively, i.e. the cost is now $\$ 2$ more per unit to consumers in both markets. This leads to a slight decrease in overall daily consumption of the firm's product of about \$3.74.
8. I use the formula $\gamma=1-2 \int_{0}^{1} f(x) d x$ that we derived in class for the Gini coefficient, γ, where $y=f(x)$ is the Lorenz curve. You should also look at problem 35 in section 14.10. In this case $\gamma=1-2 \int_{0}^{1} \frac{10^{x}-1}{9} d x=1-2\left[\frac{10^{x}}{9(\ln 10)}-\left.\frac{x}{9}\right|_{0} ^{1}\right]=1-2\left[\frac{10}{9(\ln 10)}-\frac{1}{9}-\frac{1}{9(\ln 10)}\right] \approx 0.3536$.
9. Call the firm's profit function $\Pi(q)$, then $\Pi(q)=r(q)-c(q)$, and so $\frac{d \Pi}{d q}=\frac{d r}{d q}-\frac{d c}{d q}$. The total change in profit, when output increases from $q=10$ to $q=20$, is given by the definite integral

$$
\Delta \Pi=\int_{10}^{20} \frac{d \Pi}{d q} d q
$$

which in this case may be expressed explicitly as

$$
\Delta \Pi=\int_{10}^{20} 0.4 q \sqrt{400-0.64 q^{2}}-(0.2 q+25) d q
$$

To compute the integral, we first split it into two integrals,

$$
\begin{equation*}
\Delta \Pi=\int_{10}^{20} 0.4 q \sqrt{400-0.64 q^{2}} d q-\int_{10}^{20} 0.2 q+25 d q \tag{1}
\end{equation*}
$$

and compute each one separately. To compute the integral on the left, make the substitution $u=400-0.64 q^{2}$, so $d u=-1.28 q d q$ and $0.4 q d q=-(5 / 16) d u$. The limits of integration also change:

$$
q=10 \Longrightarrow u=400-64=336 \quad \text { and } \quad q=20 \Longrightarrow u=400-256=144 .
$$

Thus
$\int_{10}^{20} 0.4 q \sqrt{400-0.64 q^{2}} d q=-\frac{5}{16} \int_{336}^{144} u^{1 / 2} d u=-\left.\frac{5}{16} \cdot \frac{u^{3 / 2}}{3 / 2}\right|_{336} ^{144}=-\frac{5}{24}\left(144^{3 / 2}-336^{3 / 2}\right) \approx 923.12$.
The integral on the right-hand side of (1) is easy:

$$
\int_{10}^{20} 0.2 q+25 d q=\frac{0.2 q^{2}}{2}+\left.25 q\right|_{10} ^{20}=40+500-(10+250)=280
$$

Putting everything together, we have

$$
\Delta \Pi \approx 923.12-280=643.12
$$

